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UNSTEADY SUPERSONIC FLOW OVER AN OSCILLATORY 
AEROFOIL USING A SECOND-ORDER TVD SCHEME 

JAE-SO0 KIM* 
Space R & D Division, Korea Aerospace Research Institute, Daeduck Science Town, P.O. Box I5, Taejeon, 305-606, Korea 

SUMMARY 
The unsteady flow over an oscillatory NACA0012 aerofoil has been simulated by the calculation with Euler 
equations. The equations are discretized by an implicit Euler in time, and a second-order space-accurate 
TVD scheme based on flux vector splitting with van Leer's limiter. Modified eigenvalues are proposed to 
overcome the slope discontinuities of split eigenvalues at Mach =O.O and f. 1.0, and to generate a bow shock 
in front of the aerofoil. A moving grid system around the aerofoil is generated by Sorenson's boundary fitted 
co-ordinates for each time step. The calculations have been done for two angles of attack 0 = 5.0" sin(wt) and 
B=3.O0+3.0"sin(ot) for the free-stream Mach numbers 20 and 3-0. The results show that pressure and 
Mach cells flow along characteristic lines. To examine unsteady effects, the responses of wall pressure and 
normal force coefficients are analysed by a Fourier series expansion. 
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1. INTRODUCTION 

The unsteady flows over a moving aerofoil have received considerable attention for flutter 
calculations. The potential equation has been widely used for the unsteady transonic flows, e.g. in 
Ballhaus and Goorjian.' RecentIy, many computations based on the Euler equations have been 
performed for the transonic and supersonic flows, because of the assumption of irrotational flow 
behind the potential equation and the lack of Navier-Stokes equations for turbulence model. The 
unsteady Euler equations have been solved for transonic flows by Magnus and Yoshihara,,2 
Steger3 and Venkatakrishnan and Jameson.4 

Many numerical schemes for the Euler equations have been developed to get sharp approxima- 
tions to shocks and contact discontinuities without numerical instabilities. The methods based on 
central space discretizations use second-order and fourth-order artificial dissipation terms to 
damp the numerical instability generated from discontinuities and to preserve the Total Variation 
Diminishing (TVD) p r ~ p e r t y . ~  However, the methods require a procedure to find the optimal 
coefficients of the artificial dissipation terms for each flow condition. The coefficients become 
larger as shock becomes stronger. Therefore, the methods are unsuitable for the approximation of 
unsteady supersonic flows, because the artificial viscosity weakens the unsteady quality of the 
equations. 

Because of these limitations upwind schemes have been developed to consider the physical 
propagation of a perturbation along characteristics into numerical discretized versions of the 
Euler equations. A variety of approaches have been tried, such as flux vector splitting by 
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Steger and Warming' and van Leer,6 and flux difference splitting by Bell et al.,' Osher and 
Chakravarthy' and Roe.' Steger and Warming' split flux vectors under the assumption that the 
flux vectors are homogeneous function of degree one in the vector of conservative variables. 

This method might produce a glitch near the sonic point due to eigenvalue switching. Because 
of these discontinuities, van Leer6 developed slope-continuous flux vectors, and Liang and 
Chan" introduced a smooth function to avoid the sonic-line glitch. For the flux difference 
splitting, Bell et al.' used exact Riemann solutions, and Osher and Chakravarthy* and Roe' used 
approximated Riemann solutions. Most of these methods introduce numerical dissipation terms 
to consider the physical propagation of a perturbation. These dissipation terms might affect the 
results in the region of discontinuities and viscous layer. Simpson and Wlutfield" and van Leer et 
~ 1 . ' ~  have compared these schemes. Although the first-order discretizations of these methods can 
be successfully applied to supersonic flows, the second-order accurate discretizations generate 
numerical instabilities in the vicinity of discontinuities. Because of these instabilities, flux limiters 
are introduced to preserve the TVD property in the space discretizations of flux splitting 
methods. The main property of a TVD scheme is that, unlike monotone scheme, it can be 
second-order accurate and is oscillation free across discontinuities. In Yee,'j a wider group of 
limiters is represented and summarized in a general and simple form. Yee et extended this 
TVD scheme to hypersonic flow. The accuracy of these second-order TVD schemes is of 
lower-order in the vicinity of discontinuities, although second-order accuracy is preserved in the 
smooth region of flow, where the flow variable can be considered to be continuous. However, 
most of these schemes have been applied to fixed body or steady-state problems. 

In this paper, an upwind scheme with flux vector splitting, LU factorization and flux limiters 
are applied to the unsteady Euler equations over a moving body. Because of the slope discontinu- 
ities of split eigenvalues in the procedure of flux vector splitting, the results obtained with the flux 
vector splitting method of A* =(A f I4)/2 have glitches at Mach=0.0 and 5 1.0. The method 
based on upwind differences has a weakness for the generation of a bow shock in front of the 
aerofoil. The downstream information of the aerofoil must be propagated upstream to generate 
a bow shock in the procedure of flux vector splitting. In this work, the eigenvalues modified by 
a smooth function are proposed for the continuous derivatives of split eigenvalues at Mach = 0.0 
and f 1.0, and the generation of bow shock. For the far-field boundary condition, free-stream 
conditions are given in the region of inflow, and numerical characteristic variables are used for the 
region of outflow. Although the Euler equations do not require the special imposition of the 
Kutta condition, zero tangential velocity is imposed at the trailing edge because the tangential 
velocity to the body surface appears at the trailing edge for the numerical error of co-ordinate 
transformation matrices. 

This method is applied to a one-dimensional shock tube and to a shock reflection on the wall 
for comparison with the exact solutions. The unsteady supersonic flows over an oscillatory 
NACA0012 aerofoil is also computed. The results show that pressure and Mach cells flow along 
characteristic lines. Oscillating phase shift and non-linear effects are studied from the analysis of 
the wall pressure and the normal force coefficients. 

2. NUMERICAL FORMULATION 

2.1. Governing equation 

ordinates is given by 
The unsteady two-dimensional Euler equation of conservative form in the Cartesian co- 
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where Q, E ( Q )  and F(Q) are column vectors non-dimensionalized by free-stream sound velocity 
(C& characteristic length ( L )  and free-stream density (po). By a generalized co-ordinate system of 
the form t = t ,  5 = 5 ( t ,  x, y) and q = q(t ,  x, y), equation (1) can be transformed to 

where 

where p, (u, u), P and e are density, Cartesian velocity components, pressure and total energy 
per unit volume, respectively. J represents the Jacobian of the transformation, while tx, tY, ... 
represent transformation matrices. U and V are the contravariant components defined as 
U = tt + ut, + u t y  and V =  t f t  + uqx + uqy. 

2.2. Time-discretization 

For time-discretization, the increment vectors can be defined by AQ =Qn+t -Qn, 
AE= En, -En, and AF = Fn + - Fn. The increment flux vectors AE and AF can be written as 

a E  
aQ AE =- AQ= AAQ, 

(3) 
dF 
aQ AF =- AQ = BAQ, 

where A and B are the Jacobian matrices of E and F, respectively. By using the increment vectors 
and the Jacobian matrices, equation (2) can be written in the form of a non-iterative implicit 
backward Euler finite difference equation as 

[I+At(6,A+SqB)]AQ= -At [6,E+6,F],  (4) 
where I is the identity matrix and 6 is an approximate spatial difference operator. 

2.3. Flux vector splitting 

Before the space discretization, the flux vectors and the Jacobian matrices are split to consider 
the physical propagation of a wave along characteristics. The eigenmatrices of A and B are given 
as the following diagonal matrices:1s 

(5 )  
At = D [U,  II, U + C(~X’ + C Y ~ ) ~ ” ,  U - C(<X’ + t~+’)”~], 
A , = D [ V ,  V, Y+C(~X’ + ? Y ~ ) ” ~ ,  V - C ( ~ X ~ + ~ Y ~ ) ’ / ’ ] ,  

where C is the sound velocity and D is a diagonal matrix. 
When the eigenvalues are split by I*  =(A f IIl)/2, they have slope discontinuities at Mach =O.O 

and 21.0. The discontinuities generate glitches in the solution at sonic points, because the 
eigenvalue is either suddenly set to zero or is suddenly non-zero. This means that the exchange of 
information of wave propagation is not enough in the vicinity of Mach=0.0 and & 1.0. In order 
to overcome this problem, van Leer6 developed slope-continuous flux vectors, and Liang and 
Chan” introduced a smooth function. 
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In this paper, the eigenvalues are split into two slope continuous values by the introduction of 
an additional function: 

where a = M - 1, M or M + 1 (la1 < E ~ ) .  Because the sudden cut-off of wave propagation can be 
prevented by the modified eigenvalue splitting, smooth transitions can be obtained at sonic 
points. The modified eigenvalues of A t v 2  are plotted in Figure 1. The eigenvalues are smoothly 
changed, and they can consider the downwind characteristics around M = 0.0. These modified 
eigenvalues are important for the generation of a bow shock in front of the aerofoil. The 
information of the aerofoil must be propagated upstream for the generation of a bow shock. 
However, the split eigenvalue without the additional function cannot approximate the wave 
propagation from the aerofoil, because negative eigenvalues are set to zero. As described earlier, 
various splitting techniques have been proposed. These kind of techniques can be unstable 
because of downwind characteristics. Therefore, although the value of &(a) must be large enough 
in the vicinity of the sonic points and the aerofoil so that wave propagates into the downwind 
direction, it must be small in the other regions. 

The Jacobian matrices are split by the transformation matrix T and its inverse T-' (see 
Reference 15) with the split eigenvectors: 

A =  T,  A, T i ' =  T&A; i-&)TF1 

= T, A$ TI' -+ T, AC T;' = A +  i- A - ,  

B=  T, A,, T; = T ~ ( A ;  +A;) T; 

= T, A; T; i- T, A; T; ' = B +  +- B -. 

(7) 

M 

Figure 1. Split eigenvalues of A;, 
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Because the flux vectors E and F are homogeneous (of degree one) functions of Q, they are split as 

E =  AQ=(A+ + A-)Q=A+Q+A-Q=E+ + E - ,  (8) 
F = B  Q = ( B +  + B - )  Q=B’Q + B - Q = F +  + F - .  

2.4. Space discretization 

difference equation: 
With the use of the split flux vectors and matrices, equation (4) can be written as an upwind 

[ I + A t ( G ~ A + + S ~ A - + S , B + + S ~ B - ) ] A Q =  -At(6;Ef+6fE-+6;F++6:F-)=RHS, (9) 

where 6 +  represents a forward space difference operator, and 6 -  represents a backward operator. 
The terms on the right-hand side are discretized by a second-order-accurate upwind formulation 
with flux limiters, and the terms on the left-hand side are discretized by a first-order-accurate 
formulation. However, since the operator on the LHS represents the difference of increment 
vectors, equation (9) can preserve second-order accuracy with the assumption of the same order 
of A t ,  Aq and At. 

For example, Jacobian metrics A* and flux vectors E* can be discretized: 

where $* are limiters. 

2.5. Limiter 

An upwind algorithm with first-order numerical flux is a monotonic scheme and, hence, a TVD 
scheme. However, the straightforward replacement of a first-order numerical flux by an appropri- 
ate second-order accurate flux leads to the generation of unstable solutions around discontinu- 
ities, similar to those encountered with a central scheme. To overcome this limitation, non-linear 
limiters have been proposed to restrict the amplitude of the gradients appearing in the additional 
terms of the second-order numerical flux, such as Minmod of van Leer, Superbee of Roe and the 
work of Osher’s.16 These limiters ensure the TVD condition of the schemes. Although each kind 
of limiter has its own characteristics, the accuracy of the schemes are of second-order in the 
smooth region of flow, where the flow variables can be considered to be continuous, and of 
lower-order in the vicinity of the discontinuities. 

In this paper, van Leer’s limiter is used, which is defined by 

$* = ( Y * + l Y * l ) / ( l + Y * ) ,  (1 1) 

where 

+ Ei+, 2 -EA 1 EL-Ei-1 
Ei, 1-E:’  

Y i +  112 = ri+ 112 = EA1-E: ’ 

2.6. LU-factorization 

The LU-factorization technique is used to invert equation (9). For the periodic condition of the 
0-grid system equation (9) is written as equation (12a) and for the H-grid or C-grid system it is 
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written as in (12b) 

[I+At(d,A+ + 6 l A -  +S;B+)] [Z+At(h,'B-)]AQ=RHS, ( W  

[ I  +At(6 ,A+ +S,B+)]  [Z +At(b;A- +6:B-)]AQ =RHS. (12b) 
This can be solved by two sweeps through the mesh. The two sweeps of equation (12a) are 

(13) [ I  + At@F A +  + 6; A -  + 6, B + ) ] @  = RHS, 

[ I  + At(S: B-)] AQ = @. 
Similar sweeps are applied to equation (1 2b). 

2.7. Boundary condition 

For the far-field boundary, the characteristic values are used for the region of outflow, and the 
free-stream condition for the region of inflow. Along the body surface ~ ( t ,  x, y)=O, the condition 
that the velocities normal to the body surface are zero is given by 

The pressure on the body surface can be obtained from the normal momentum equation: 

( L V X +  5 , V , ~ ~ ~ + ~ V ~ + ? , Z ~ ~ , = P ~ ~ * ? t + ~ ~ * V x + ~ ~ ~ V y ~ - P ~ ~ V x ~ g + ? y ~ ~ ~  (15) 
where p and U are extrapolated from interior points. For the trailing edge, it is known that Euler 
computation does not require the special imposition of the Kutta condition. However, the 
velocity tangential to the body surface exists because of the numerical error of the co-ordinate 
transformation matrices. Then, the tangential velocity is set to zero at the trailing edge, which 
means that the trailing edge is imposed as a stagnation point of the contravariant velocity field. 

3. RESULTS AND DISCUSSION 

3.1. Shock tube problem 

Calculation is performed for a shock tube problem with PL= lo5, p L  = 1, P R =  lo4, pR =0*125 
and UL = UR =0, where L and R represent the left and right sides, respectively. This problem has 
been tested by various schemes for comparison with the exact solution.16 The results of the 
first-order upwind scheme at t=6-2 msec are shown in Figure 2 along with the exact solution. 
Figure 3, with van Leer's limiter, shows a sharp approximation to the exact solutions. 

For the effect of the eigenvalues modified by a smooth function, another problem for the flow 
with PL = lo5, p L  = 1, PR = lo3, pR = 0.01 and UL = UR = 0 at t = 3.9 msec is considered. The results 
by the eigenvalues without the smooth function in Figure 4 have glitches in the vicinity of sonic 
point, but they are smoothed in Figure 5 by the modified eigenvalues. 

3.2. Shock reflection on the wall 

The shock reflection problem shown in Figure 6 is solved to examine the characteristics of 
shock reflection. Figures 7(a) and 7(b) show the contour lines of the pressure of the first-order and 



Figure 2. Results of first-order scheme ( P ~ = 1 0 ’ ,  p ~ =  1, PR=IO~, p~=0.125,  UL=UR=O) 
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0.0 Txzl 0.0 x 4.0 

Figure 6. Geometry of shock reflection on the wall (p.u,u, P)(o.o .,., ) = ( L  2.9, 0, 1, 1/4), (p, U, U, P)(,,I.o,,,=(1.69997, 
2.6 1934, - 0.50632, 1.528 19) 

Figure 7. (a) Pressure contour of first-order scheme (b) Pressure contour of second-order scheme 

the second-order schemes, respectively, to compare the concentration of lines. The figures show 
that a distinct shock can be captured by the second-order scheme. For the convergence history 
from a supersonic initial condition, the history of the residual of the continuity equation is plotted 
in Figure 8 for the first-order scheme with At =0.025 and At =005, and for the second-order 
scheme with A t = 0 0 2 5 .  The figure shows that the solutions converge within about 100 or 200 
steps. Because the length of the numerical domain x is 4.0, it is expected to take about four 
seconds of non-dimensional time to propagate the initial disturbed condition to the whole 
numerical domain. 

3.3. Oscillatory NACAOOl2 aerofoil 

The unsteady flow is calculated over an oscillatory NACA0012 aerofoil with the angle of 
attack of 

(16) 8 = 0, + tl0 sin@), 
as shown in Figure 9. The O-grid system of 160 x 61 are generated by Sorenson’s method of 
boundary fitted co-ordinates” for each time step. The steady-state solutions are used as an initial 
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Figure 8. History of numerical residual of the continuity equation 

condition to converge to a periodic steady state. The calculations have been performed for two 
cases of angle of attack (AA) with 8, = 0.0" and O0 = 5.0" (AA I) and 8, = 3.0" and O0 = 3.0" (AA 11) 
in the free stream Mach number of 2.0 and 3.0 with frequencies o=n, 2n, 2 . 5 ~  and 4n. 

The change of the local angle of attack on the body surface (xb, Yb) of the moving aerofoil can 
be written as 

It can be expected that equation (17) has the characteristics of phase shift and higher-modes of 
fluctuation with respect to a change in the fixed co-ordinates (x,y). Equation (17) can be 
expanded as a Fourier-series: 

(18) 

where el and tI2 are the first- and second-order fluctuation components of AA, and c$l and 42 are 
their phase angles, respectively. The characteristics of phase shift in the body axes (xb, yb) exert 
a direct influence on the response of wall pressure. The c$l are plotted in Figure 10 along the body 
surface for AA I. The variation of 41 becomes larger as the frequency is increased. 

The steady-state pressure contours are plotted in Figure 11 for a free-stream Mach number of 
2-0, and an angle of attack of 0.0. The figure shows a bow shock in front of the aerofoil and a weak 
shock at the trailing edge.' The history of the normal force coefficient C,, as defined by 
I( p-po)ds/O-5po u;, shows that the solution converges to a periodic steady state within two to 
three periodic calculations. The history is plotted in Figure 12 for the AAs I and I1 for Mo=2*0  
and w=2n. For a free-stream Mach number of 2.0, the pressure contours are plotted in Figures 

ebody(Xb9 yb) = 8, + 81 (xb, yb)sin(mt -k 41) -k 82(Xb, yb)sin(2ot -k 4 2 )  + . * '  
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Figure 9. Geometry of oscillatory NACAOOI 2 aerofoil 
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X 

Figure 10. First-mode phase adgle 4, of fluctuation of Obody(xb, yb) for M o = 2 . 0  (1) o=n; (2) w=2n; (3) 0=2.5n; 
(4) 0 = 4n 

13(a) and 13(b) for the AA I with 0=2z, and in Figures 1qa) and 1qb) for the AA 1I with 0=4n. 
The Mach contours are plotted in Figures 15(a) and 15(b) for the AA I with w = 4 z  For 
a free-stream Mach number of 3.0, the pressure contours are plotted in Figures 16(a) and 16(b) for 
the AA I1 with 0=4n. The pressure and Mach cells flow along characteristic lines. The length of 
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Figure 12. History of normal force coefficient for Mo=2*0 and o - 2 n :  -, AA I; ---, AA 11 
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cells are approximately proportional to the periodic time Tp. The pressure cells are more distinct 
than the Mach cells. They are rapidly decaying in the case of high Mach number. The oscillatory 
motion of the aerofoil has little effect on the bow shock in front of the aerofoil. 

The pressure coefficient distributions, as defined by (p-p0)/O-5p,  us, on the body surface and 
symmetric line at t /Tp = 00 are plotted in Figure 17 for M o  = 2.0, o = 2% and AA 1. Figure 17 
shows a strong shock in front of the aerofoil. The pressure at the stagnation point is 4.05 at 
t/T,=O-O. Compared with the stagnation pressure of 4.13 after the normal shock of a steady free 
stream Mach number of 2-0, it is a very good result. In order to analyse the wall pressure, the 
pressure can be expanded as a Fourier series. 

In equation (19), P, represents a steady value induced by the oscillatory motion, P1 and P 2  are 
the first- and second-mode fluctuation components of wall pressure, and dl and 42 are their 
phase angles, respectively. From the analysis, the first mode of fluctuation is dominant, and the 
higher-modes are rapidly decaying. P1 and +1 are plotted in Figures 18(a) and 18(b). Compared 
with the phase angles of local angle of attack, the phase angle of first mode has very similar trend. 
However, the first mode of phase angles of the upper and lower walls have a phase shift of n. With 
the increase of frequency, the amplitudes of fluctuations and the variations of phase angle become 
larger. Because the stagnation point is moving in this region, the second mode of fluctuation is 
more dominant than the first mode. The amplitude in the forward region is larger than the 
backward region. 

In addition, the normal force coefficients are plotted in Figure 19 for M o  = 2.0. They can also be 
expanded as a Fourier series. The first-mode of fluctuation is also dominant. In Figures 20 and 21, 
the amplitude Cn1 and the phase angle 41 of first-mode fluctuation are plotted. As one can note 
from Figures 20 and 21, the amplitude increases with the increase in frequency, and it converges 
to certain values. The phase angles of AA I and TI are the same for the same Mach number. This 
means that the phase angle is strongly dependent on the frequency. It rapidly decreases as 
frequency increases. 

4. CONCLUSION 

The Euler equations have been solved for unsteady supersonic flows over an oscillatory 
NACA0012 aerofoil by an implicit Euler in time, and a second-order space-accurate TVD scheme 
based on flux vector splitting with van Leer's limiter. The split eigenvalues are applied successfully 
to overcome slope discontinuities at Mach=0-0 and f 1.0, and to generate a bow shock in front 
of the aerofoil. The flows of a free-stream Mach number of 2.0 and 3-0 have been calculated with 
AA O= 5-0" sin(@ and f?= 3.0" + 3-0" sin(ot). The results show that pressure and Mach cells flow 
along characteristic lines. The length of cells are approximately proportional to the periodic time 
Tp. Compared with the stagnation pressure after normal shock, the result of the pressure at the 
stagnation point is very good. The wall pressure strongly depends on the change of local AA on 
the surface in the body axes (xb, Yb). The normal force coefficients have phase shift angles with 
respect to AA. The amplitude of fluctuation increases with increase in frequency, and converges to 
certain values. The phase shift angle is strongly dependent on the frequency, and it rapidly 
decreases as the frequency increases. 
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Figure 13. Pressure contours for AA I, Mo=2.0 and o-2r (AP (---)=O.l, AP (---)=O.Ol, point 1: P=08, point 2: 
PEo.7): (a) t/Tp=OO (0=0.0"); (b) t/Tp=025 (0=5.0") 



UNSTEADY SUPERSONIC FLOW OVER AN OSCILLATORY AEROFOIL 

3 

2 

1 

; r o  

-1  

-2 

0 1 2 3 4 5 
" 
-1 
(a) X 

3 

2 

1 

+ o  

-1 

3 -L. 

-3 
-1 0 1 2 3 4 5 
(b) X 

58 1 
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(b) X 
Figure 16. Pressure contours for AA 11, Mo=3.0 and o = 4 n  (AP (----)=@l, AP (-)=M)2, point 1: P=0.8, 
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Figure 19. History of normal force coefficient for Mo=2.0 :  ( 1 )  o=n; (2) w=2n; (3) o=2,5n; (4) o = 4 n ;  -, AA I; 
, AA I1 _ _ _  
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Figure 20. For the first-mode fluctuation of normal force coefficient [(-) Mo=2.0; (---) Mo=3.0; (U) AA I; ( A )  
AA 111 
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Figure 21. Phase angle of first-mode fluctuation of normal force coefficient [(--) Mo=2*0; (---) Mo=3’0; (0) AA t 
(A) AA 111 

APPENDIX: NOMENCLATURE 

A, B 
C 
CO 

Jacobian matrices of E and F 
sound velocity 
free-stream sound velocity 
normal force coefficient defined by J-(P- Po)ds/0-5Ug 
pressure coefficient defined by - (P-P0) /o-5  Ug 
flux vectors 
Jacobian of the transformation 
characteristic length or aerofoil chord length 
pressure non-dimensionalized by poCg 
non-dimensionalized free-stream pressure 
wall pressure of steady flow 
wall pressure of unsteady flow 
time non-dimensionalized by L/Co 
contravariant velocity components 
dimensionless free-stream velocity 
velocity components in co-ordinates (x, y) non-dimensionalized by Co 
Cartesian co-ordinates 
body axes 
general co-ordinates 
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A 
P 
Po 
419 4 2  
0 

transformation matrices 
angle of attack 
amplitude of oscillating angle of attack 
amplitude of fluctuation 
eigenvalue 
density non-dimensionalized by po 
free-stream density 
phase angle of fluctuation 
oscillating frequency 

REFERENCES 

1. W. F. Ballhaus and P. M. Goorjian, ‘Implicit finite difference computations of unsteady transonic flows about airfoils, 

2. R. Magnus and H. Yoshihara, ‘Unsteady transonic flows over an airfoil’, A I A A  J., 13, 1622-1628 (1975). 
3. J. L. Steger, ‘Implicit finite difference simulation of flow about arbitrary two-dimensional geometries’, A I A A  J., 16, 

4. V. Venkatakrishnan and A. Jameson, ‘Computation of unsteady transonic flows by the solution of Euler equations’, 

5. J. L. Steger and R. F. Warming, ‘Flux vector splitting of the inviscid gasdynamic equations with applications to 

6. B. van Leer, ‘Flux vector splitting for Euler equations’, Lecture Notes in Physics, Vol. 170, 1982, pp. 501-512. 
7. J. B. Bell, P. Colella and J. A. Trangenstein, ‘Higher order Godunov methods for general system of hyperbolic 

8. S. Osher and S. Chakravarthy, ‘Upwind schemes and boundary conditions with application to Euler equations in 

9. P. L. Roe, ‘Approximate Rieman solvers, parameter vectors and difference schemes’, J. Comput. Phys., 43, 357-372 

10. S. M. Liang and J. J. Chan, ‘An improved upwind scheme for the Euler equations’, J. Comput. Phys., 84, 461473 

11. L. B. Simpson and D. Whitfield, ‘A flux difference split algorithm for unsteady Navier-Stokes solutions’, AIAA- 

12. B. van Leer, J. L. Thomas, P. L. Roe and R. W. Newsom, ‘A comparison of numerical flux formulas for the Euler and 

13. H. C. Yee, ‘Construction of explicit and implicit symmetric TVD schemes and their application’, J. Comput. Phys., 68, 

14. H. C. Yee. G. H. KIopfer and J. L. Montagne, ‘High-resolution shock-capturing schemes for inviscid and viscous 

15. T. H. Pulliam and D. S. Chaussee, ‘A diagonal form of an implicit approximate factorization algorithm’, J .  Cornput 

16. C. Hirsch, Numerical Computation of Internal and External Flows, Wiley, New York, 1988. 
17. J. L. Steger and R. L. Sorenson, ‘Automatic mesh-point clustering near a boundary in grid generation with elliptic 

including the treatment of irregular shock wave motions’, A I A A  J., 15, 1728-1735 (1977). 

679486 (1978). 

A I A A  J . ,  26,974-981 (1988). 

finitedifference methods’, J. Comput. Phys., 40, 263-293 (1981). 

conservation laws’, J. Comput. Phys., 82, 362-397 (1987). 

general geometries’. J. Comput. Phys., 50, 447481 (1983). 

(1981). 

( 1989). 

89-1995-CP, AIAA 9th Comput. Fluid Dynamics Conf., 1989. 

Navier-Stokes equations’, AIAA paper 87-1104, AIAA 8th Comput. Fluid Dynamics Conf., 1987. 

151-179 (1987). 

hypersonic flows’, J. Comput. Phys., 88, 31-61 (1990). 

Phys., 39, 347-363 (1 98 I) .  

partial differential equation’, J. Comput. Phys., 33,405-410 (1979). 


